Package index
-
tidytacos-package
- tidytacos: Manipulate Taxonomic Composition Data of Microbial Communities
-
tidytacos
- tidytacos: Functions to manipulate and visualize amplicon count data.
File handling
Functions for loading in or creating tidytaco objects or converting to another datatype.
-
read_tidytacos()
- Read community data written by tidytacos
-
write_tidytacos()
- Write community data in tidytacos format
-
merge_tidytacos()
- Merge two tidytacos objects
-
create_tidytacos()
- Initiate tidytacos object
-
add_metadata()
- Add metadata to the tidytacos object
-
from_dada()
- DADA2 to a tidytacos object
-
from_phyloseq()
- Convert phyloseq object to tidytacos object
-
as_phyloseq()
- Convert tidytacos object to phyloseq object
-
to_biom()
- Write the counts of the tidytacos object to a biom file
-
to_fasta()
- Write the sequences of the taxa table to a fasta file
Table manipulation
Functions for manipulation of the three distinct tables using tidy-related functions.
-
samples()
- Extract the sample table
-
taxa()
- Extract the taxon table
-
counts()
- Extract the count table
-
select_counts()
- Retain or remove a set of count variables
-
select_samples()
- Retain or remove a set of sample variables
-
select_taxa()
- Retain or remove a set of taxon variables
-
mutate_counts()
- Create extra variables in the count table
-
mutate_samples()
- Create extra variables in the sample table
-
mutate_taxa()
- Create extra variables in the taxa table
-
filter_counts()
- Filter the counts
-
filter_samples()
- Filter the samples
-
filter_taxa()
- Filter the taxa
-
aggregate_samples()
- Aggregate samples with identical values for all metadata
-
aggregate_taxa()
- Aggregate taxa on a given taxonomic rank
-
everything()
- Get all data in one single table
Relative abundance, prevalence and other count computations
Functions for transforming the count table to different matrix representations or pairwise comparison.
-
counts_matrix()
- Return a counts matrix
-
rel_abundance_matrix()
- Return a relative abundance matrix
-
add_rel_abundance()
- Add relative abundances to count table
-
add_mean_rel_abundance()
- Add average relative abundances to taxa table
-
mean_rel_abundances()
- Get mean relative abundances of taxa in general or per condition
-
add_absolute_abundance()
- Add absolute abundances to count table
-
add_spike_ratio()
- Add spike ratio
-
add_density()
- Add density to count table
-
add_logratio()
- Add logratios
-
add_clr_abundance()
- Perform a centered log ratio transformation on the readcounts.
-
add_jervis_bardy()
- Apply the taxon QC method of Jervis-Bardy
-
prevalences()
- Get prevalences of taxa in general or per condition
-
add_prevalence()
- Add taxon prevalences to the taxon table
-
counts_tidy()
- Convert matrix with counts to tidy data frame
-
add_total_absolute_abundance()
- Add total absolute abundances of samples
-
add_total_count()
- Add total read count per sample
-
add_total_density()
- Add total densities of samples
-
tacoplot_alphas()
- Return a boxplot of every alpha metric per group in the samples table of a tidytaco object. If no alpha metrics are present, all available ones are added.
-
tacoplot_codifab()
- Generate a compositional differential abundance plot
-
tacoplot_euler()
- Return an euler diagram of overlapping taxon_ids between conditions
-
tacoplot_ord()
- Return an ordination plot of the samples
-
tacoplot_ord_ly()
- Return an interactive ordination plot of the samples
-
tacoplot_prevalences()
- Return a heatmap of prevalence of taxa in groups of samples
-
tacoplot_scree()
- Return a scree plot to visualize the eigenvalues of the PCA.
-
tacoplot_stack()
- Return a bar plot of the samples
-
tacoplot_stack_ly()
- Return an interactive bar plot of the samples
-
tacoplot_venn()
- Return a venn diagram of overlapping taxon_ids between conditions
-
tacoplot_venn_ly()
- Return an interactive venn diagram of overlapping taxon_ids between conditions
-
tacoplot_zoom()
- Return a visualization designed for a small number of samples
Statistical tests
Functions for various statistical tests that can be performed on a tidytacos object.
-
perform_adonis()
- Perform an adonis test
-
perform_anosim()
- Perform anosim test
-
perform_mantel_test()
- Determine the correlation between the distance of the counts in a tidytacos object and a sample variable, multiple sample variables or another matrix.
-
add_codifab()
- Perform compositional differential abundance analysis
-
rank_names()
- Return rank names associated with a tidytacos object if these are defined. In case of undefined rank names, the function returns the taxon_id field.
-
set_rank_names()
- Set rank names for a tidytacos object
-
add_taxon_name()
- Add sensible taxon name to taxon table
-
add_taxon_name_color()
- Add taxon color for visualization.
-
add_eigentaxa()
- Calculates eigentaxa values based on SparCC - MCL generated clusters per sample. It is advised to run
cluster_taxa()
on the tidytacos object before running this function to add the clusters if you want to stray from any default parameters.
-
add_alpha()
- Add alpha diversity measure
-
add_alphas()
- Add alpha diversity measures
-
betas()
- Get beta diversity table
-
add_ord()
- Add ordination
-
add_copca()
- Add compositional principal components to the sample table
-
add_tree()
- Construct a phylogeny from ASV sequences
-
calculate_unifrac_distances()
- Calculate unifrac distance matrix from a tidytacos object with a rooted tree
-
cluster_samples()
- Clusters samples into n clusters
-
cluster_taxa()
- Performs SparCC network analysis on a tidytacos object and then performs Markov Clustering on the network to annotate taxa of the largest clusters in the tidytacos object.
-
add_sample_clustered()
- Add clustering-based sample order
Network analysis
Functions to perform network inference, clustering and filtering the resulting clusters.
-
network()
- Perform network inference with SparCC on a tidytacos object, after dropping rare taxa. See
SpiecEasi::sparcc()
.
-
filter_network()
- Filters the output of
network()
to a minimal threshold and transforms to matrix for downstream clustering or heatplot visualization.
-
cluster_network()
- Performs Markov Clustering on a sparcc network matrix generated by
filter_network()
. and returns a tibble with clusters and taxon identifiers. Optionally, the network can be visualized.
-
trim_asvs()
- Trim all sequences
-
classify_taxa()
- (Re)classify amplicon sequences
-
reset_ids()
- Reset the taxon and sample IDs
-
change_id_samples()
- Change sample IDs to a given expression
-
change_id_taxa()
- Change taxon IDs to a given expression
-
remove_empty_samples()
- Removes empty samples from the tidytacos object
-
tidy_count_to_matrix()
- Convert counts tidy data frame to matrix
-
rarefy()
- Rarefy the samples to a given number of reads
-
test_taco()
- Create a tidytacos object for testing/example purporses
-
taxonlist_per_condition()
- Return a list of taxon IDs per condition
-
tacosum()
- Return some descriptive numbers