
Package index
-
tidytacos-package - tidytacos: Manipulate Taxonomic Composition Data of Microbial Communities
-
tidytacos - tidytacos: Functions to manipulate and visualize amplicon count data.
File handling
Functions for loading in or creating tidytaco objects or converting to another datatype.
-
read_tidytacos() - Read community data written by tidytacos
-
write_tidytacos() - Write community data in tidytacos format
-
merge_tidytacos() - Merge two tidytacos objects
-
create_tidytacos() - Initiate tidytacos object
-
add_metadata() - Add metadata to the tidytacos object
-
from_dada() - DADA2 to a tidytacos object
-
from_phyloseq() - Convert phyloseq object to tidytacos object
-
as_phyloseq() - Convert tidytacos object to phyloseq object
-
to_biom() - Write the counts of the tidytacos object to a biom file
-
to_fasta() - Write the sequences of the taxa table to a fasta file
Table manipulation
Functions for manipulation of the three distinct tables using tidy-related functions.
-
samples() - Extract the sample table
-
taxa() - Extract the taxon table
-
counts() - Extract the count table
-
select_counts() - Retain or remove a set of count variables
-
select_samples() - Retain or remove a set of sample variables
-
select_taxa() - Retain or remove a set of taxon variables
-
mutate_counts() - Create extra variables in the count table
-
mutate_samples() - Create extra variables in the sample table
-
mutate_taxa() - Create extra variables in the taxa table
-
filter_counts() - Filter the counts
-
filter_samples() - Filter the samples
-
filter_taxa() - Filter the taxa
-
aggregate_samples() - Aggregate samples with identical values for all metadata
-
aggregate_taxa() - Aggregate taxa on a given taxonomic rank
-
everything() - Get all data in one single table
-
group_samples() - Group the samples
-
grouped_taco - An S4 class to store a grouped tidytaco with group_samples
Relative abundance, prevalence and other count computations
Functions for transforming the count table to different matrix representations or pairwise comparison.
-
counts_matrix() - Return a counts matrix
-
rel_abundance_matrix() - Return a relative abundance matrix
-
add_rel_abundance() - Add relative abundances to count table
-
add_mean_rel_abundance() - Add average relative abundances to taxa table
-
mean_rel_abundances() - Get mean relative abundances of taxa in general or per condition
-
add_absolute_abundance() - Add absolute abundances to count table
-
add_spike_ratio() - Add spike ratio
-
add_density() - Add density to count table
-
add_logratio() - Add logratios
-
add_clr_abundance() - Perform a centered log ratio transformation on the readcounts.
-
add_jervis_bardy() - Apply the taxon QC method of Jervis-Bardy
-
prevalences() - Get prevalences of taxa in general or per condition
-
add_prevalence() - Add taxon prevalences to the taxon table
-
counts_tidy() - Convert matrix with counts to tidy data frame
-
add_total_absolute_abundance() - Add total absolute abundances of samples
-
add_total_count() - Add total read count per sample
-
add_total_density() - Add total densities of samples
-
add_dominant_taxa() - Adds the most dominant taxa in the sample to the sample table
-
tacoplot_alphas() - Return a boxplot of every alpha metric per group in the samples table of a tidytaco object. If no alpha metrics are present, all available ones are added.
-
tacoplot_codifab() - Generate a compositional differential abundance plot
-
tacoplot_euler() - Return an euler diagram of overlapping taxon_ids between conditions
-
tacoplot_ord() - Return an ordination plot of the samples
-
tacoplot_ord_ly() - Return an interactive ordination plot of the samples
-
tacoplot_prevalences() - Return a heatmap of prevalence of taxa in groups of samples
-
tacoplot_scree() - Return a scree plot to visualize the eigenvalues of the PCA.
-
tacoplot_stack() - Return a bar plot of the samples
-
tacoplot_stack_ly() - Return an interactive bar plot of the samples
-
tacoplot_venn() - Return a venn diagram of overlapping taxon_ids between conditions
-
tacoplot_venn_ly() - Return an interactive venn diagram of overlapping taxon_ids between conditions
-
tacoplot_zoom() - Return a visualization designed for a small number of samples
Statistical tests
Functions for various statistical tests that can be performed on a tidytacos object.
-
perform_adonis() - Perform an adonis test
-
perform_anosim() - Perform anosim test
-
perform_lda() - LDA model estimation
-
perform_mantel_test() - Determine the correlation between the distance of the counts in a tidytacos object and a sample variable, multiple sample variables or another matrix.
-
add_codifab() - Perform compositional differential abundance analysis
-
rank_names() - Return rank names associated with a tidytacos object if these are defined. In case of undefined rank names, the function returns the taxon_id field.
-
set_rank_names() - Set rank names for a tidytacos object
-
add_taxon_name() - Add sensible taxon name to taxon table
-
add_taxon_name_color() - Add taxon color for visualization.
-
add_eigentaxa() - Calculates eigentaxa values based on SparCC - MCL generated clusters per sample. It is advised to run
cluster_taxa()on the tidytacos object before running this function to add the clusters if you want to stray from any default parameters.
-
add_alpha() - Add alpha diversity measure
-
add_alphas() - Add alpha diversity measures
-
add_subsampled_alpha() - Add alpha diversity measures using subsampling
-
betas() - Get beta diversity table
-
add_ord() - Add ordination
-
add_copca() - Add compositional principal components to the sample table
-
add_tree() - Construct a phylogeny from ASV sequences
-
calculate_unifrac_distances() - Calculate unifrac distance matrix from a tidytacos object with a rooted tree
-
cluster_samples() - Clusters samples into n clusters
-
perform_lda() - LDA model estimation
-
cluster_taxa() - Performs SparCC network analysis on a tidytacos object and then performs Markov Clustering on the network to annotate taxa of the largest clusters in the tidytacos object.
-
add_sample_clustered() - Add clustering-based sample order
Network analysis
Functions to perform network inference, clustering and filtering the resulting clusters.
-
network() - Perform network inference with SparCC on a tidytacos object, after dropping rare taxa. See
SpiecEasi::sparcc().
-
filter_network() - Filters the output of
network()to a minimal threshold and transforms to matrix for downstream clustering or heatplot visualization.
-
cluster_network() - Performs Markov Clustering on a sparcc network matrix generated by
filter_network(). and returns a tibble with clusters and taxon identifiers. Optionally, the network can be visualized.
Topic Modeling (LDA)
Methods to help with topic modeling of microbiome data using Latent Dirichlet Allocation.
-
perform_lda() - LDA model estimation
-
ldaplot_beta() - Plot LDA beta values
-
calculate_lda_perplexities() - Calculate LDA model perplexities for a range of topic numbers
-
align_lda_topics() - Aligns LDA topics across models
-
ldaplot_alignment() - Plot LDA topic alignment results
-
trim_asvs() - Trim all sequences
-
classify_taxa() - (Re)classify amplicon sequences
-
reset_ids() - Reset the taxon and sample IDs
-
change_id_samples() - Change sample IDs to a given expression
-
change_id_taxa() - Change taxon IDs to a given expression
-
remove_empty_samples() - Removes empty samples from the tidytacos object
-
remove_duplicate_samples() - Removes duplicate samples from the tidytacos object
-
tidy_count_to_matrix() - Convert counts tidy data frame to matrix
-
rarefy() - Rarefy the samples to a given number of reads
-
test_taco() - Create a tidytacos object for testing/example purporses
-
taxonlist_per_condition() - Return a list of taxon IDs per condition
-
tacosum() - Return some descriptive numbers