add_ord()
adds the first n dimensions of a dimensionality reduction
method performed on a given dissimilarity matrix as new variables to the
sample table of a tidytacos object.
Arguments
- ta
A tidytacos object.
- distance
The distance indices to use, see
vegan::vegdist()
.- method
The ordination method to use to calculate coordinates. Choices are
pcoa
,tsne
,umap
.- dims
The amount of dimensions to reduce the dissimilarities to.
- binary
Perform presence/absence standardisation before distance computation or not.
- ...
Additional arguments to pass to the ordination function: either
stats::cmdscale()
,Rtsne::Rtsne()
orumap::umap()
.
Details
This function calculates the dissimilarities between samples followed by
an ordination analysis. It will then add the first n dimensions to
the sample table of a tidytacos object named "ord1", "ord2", ... This
function will also add relative abundances if not present using
add_rel_abundance()
.
See also
Other sample-modifiers:
add_alpha()
,
add_alphas()
,
add_metadata()
,
add_sample_clustered()
,
add_spike_ratio()
,
add_total_absolute_abundance()
,
add_total_count()
,
add_total_density()
,
cluster_samples()
Other diversity-metrics:
add_alpha()
,
add_alphas()
Examples
# Initiate counts matrix
x <- matrix(
c(1500, 1300, 280, 356, 456, 678),
ncol = 3
)
rownames(x) <- c("taxon1", "taxon2")
colnames(x) <- c("sample1", "sample2", "sample3")
# Convert to tidytacos object
data <- create_tidytacos(x,
taxa_are_columns = FALSE
)
# Add pcoa
data <- data %>%
add_ord()
# The variances of the ordination dimensions can be accessed with
data$ord_variances
#> [1] 1.000000e+00 7.325738e-16 0.000000e+00